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Permanent Link to Innovation: Accuracy versus Precision
2021/03/11
A Primer on GPS Truth By David Rutledge True to its word origins, accuracy
demands careful and thoughtful work. This article provides a close look at the
differences between the precision and accuracy of GPS-determined positions, and
should alleviate the confusion between the terms — making abuse of the truth
perhaps less likely in the business of GPS positioning. INNOVATION INSIGHTS by
Richard Langley JACQUES-BÉNIGNE BOSSUET, the 17th century French bishop and
pulpit orator, once said “Every error is truth abused.” He was referring to man’s
foibles, of course, but this statement is much more general and equally well applies
to measurements of all kinds. As I am fond of telling the students in my introduction
to adjustment calculus course, there is no such thing as a perfect measurement. All
measurements contain errors. To extract the most useful amount of information from
the measurements, the errors must be properly analyzed. Errors can be broadly
grouped into two major categories: biases, which are systematic and which can be
modeled in an equation describing the measurements, thereby removing or
significantly reducing their effect; and noise or random error, each value of which
cannot be modeled but whose statistical properties can be used to optimize the
analysis results. Take GPS carrier-phase measurements, for example. It is a standard
approach to collect measurements at a reference station and a target station and to
form the double differences of the measurements between pairs of satellites and the
pair of receivers. By so doing, the biases in the modeled measurements that are
common to both receivers, such as residual satellite clock error, are canceled or
significantly reduced. However, the random error in the measurements due to
receiver thermal noise and the quasi-random effect of multipath cannot be
differenced away. If we estimate the coordinates of the target receiver at each epoch
of the measurements, how far will they be from the true coordinates? That depends
on how well the biases were removed and the effects of random error. By comparing
the results from many epochs of data, we might see that the coordinate values agree
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amongst themselves quite closely; they have high precision. But, due to some
remaining bias, they are offset from the true value; their accuracy is low. Two
different but complementary measures for assessing the quality of the results. In this
month’s column, we will examine the differences between the precision and accuracy
of GPS-determined positions and, armed with a better understanding of these often
confused terms, perhaps be less likely to abuse the truth in the business of GPS
positioning. “Innovation” features discussions about advances in GPS technology, its
applications, and the fundamentals of GPS positioning. The column is coordinated by
Richard Langley, Department of Geodesy and Geomatics Engineering, University of
New Brunswick. For many, Global Positioning System (GPS) measurement errors are
a mystery. The standard literature rarely does justice to the complexity of the subject.
A basic premise of this article is that despite this, most practical techniques to
evaluate differential GPS measurement errors can be learned without great difficulty,
and without the use of advanced mathematics. Modern statistics, a basic signal-
processing framework, and the careful use of language allow these disruptive errors
to be easily measured, categorized, and discussed. The tools that we use today were
developed over the last 350 years as mathematicians struggled to combine
measurements and to quantify error, and to generally understand the natural
patterns. A distinguished group of scientists carried out this work, including Adrien-
Marie Legendre, Abraham de Moivre, and Carl Friedrich Gauss. These luminaries
developed potent techniques to answer numerous and difficult questions about
measurements. We use two special terms to describe systems and methods that
measure or estimate error. These terms are precision and accuracy. They are terms
used to describe the relationship between measurements, and to underlying truth.
Unfortunately, these two terms are often used loosely (or worse used
interchangeably), in spite of their specific definitions. Adding to the confusion,
accuracy is only properly understood when divided into its two natural components:
internal accuracy and external accuracy. GPS measurements are like many other
signals in that with enough samples the probability distribution for each of the three
components is typically bell-shaped, allowing us to use a particularly powerful error
model. This bell-shaped distribution is often called a Gaussian distribution (after Carl
Friedrich Gauss, the great German mathematician) or a normal distribution. Once
enough GPS signal is accumulated, a normal distribution forms. Then, potent tools
like Gauss’s normal curve error model and the associated square-root law can be
brought to bear to estimate the measurement error. An interesting aspect of GPS,
however, is that over short periods of time, data are not normally distributed. This is
of great importance because many applications are based upon small datasets. This
results in a fundamental division in terms of how measurement error is evaluated.
For short periods of time, the gain from averaging is difficult to quantify, and it may
or may not improve accuracy. For longer periods of time the gain from averaging is
significant, a normal distribution forms, and the square-root law is used to estimate
the gain. The absence of a Gaussian distribution in these datasets (1 hour or less) is
one source of the confusion surrounding measurement error. Another source of
confusion is the richly nuanced concept of accuracy. By closely looking at each of
these, a clear picture emerges about how to effectively analyze and describe
differential GPS measurement error.   The GPS Signal It is helpful to consider
consecutive differential GPS measurements as a signal, and thus from the vantage of



signal processing. Here, we use the term measurement to refer to position solutions
rather than the raw carrier-phase and pseudorange measurements a receiver makes.
Sequential position measurements from a GPS system are discrete signals, the result
of quantization, transformation, and other processing of the code and carrier data
into more meaningful digital output. In comparison, a continuous signal is usually
analog based and assumes a continuous range of values, like a DC voltage. A signal is
a way of describing how one value is related to another. Figure 1 shows a time series
consisting of a discrete signal from a typical GPS dataset (height component). These
data are based on processing carrier-phase data from a pair of GPS receivers, in
double-difference mode, holding the position of one fixed while estimating that of the
other. The vertical axis is often called the dependent variable and can be assigned
many labels. Here it is labeled GPS height. The horizontal axis is typically called the
independent variable, or the domain. This axis could be labeled either time or sample
number, depending on how we want this variable to be represented. Here it is
labeled sample number. The data in Figure 1 are in the time domain because each
GPS measurement was sampled at equal intervals of time (1 second). We’ll refer to a
particular data value (height) as xi. Figure 1. A 10-minute sample of GPS height data.
Ten minutes of GPS data are displayed in Figure 1. These data are the first 600
measurements from a larger 96-hour dataset that forms the basis of this paper. The
mean (or average) is the first number to calculate in any error-assessment work. The
mean is indicated by . There is nothing fancy in computing the mean; simply add all
of the measurements together and divide by the total sample number, or N. Equation
1 is its mathematical form: �[1] The mean for these data is 474.2927 meters, and
gives us the average value or “center” of the signal. By itself, the mean provides no
information on the overall measurement error, so we start our investigation by
calculating how far each GPS height determination is located away from the mean, or
how the measurements spread or disperse away from the center. In mathematical
form, the expression denotes how far the ith sample differs from the mean. As an
example, the first sample deviates by 0.0038 meters (note that we always take the
absolute value). The average deviation (or average error) is found by simply summing
the deviations of all of the samples and dividing by N. The average deviation
quantifies the spreading of the data away from the mean, and is a way of calculating
precision. When the average deviation is small, we say the data are precise. For these
data, the average deviation is 0.0044 meters. For most GPS error studies, however,
the average deviation is not used. Instead, we use the standard deviation where the
averaging is done with power rather than amplitude. Each deviation from the mean, ,
is squared, , before taking the average. Then the square root is taken to adjust for the
initial squaring. Equation 2 is the mathematical form of the standard deviation (SD):
� [2] The standard deviation for the data in Figure 1 is 0.0052 meters. But note that
these data have a changing mean (as indicated by the slowly varying trend). The
statistical or random noise remains fairly constant, while the mean varies with time.
Signals that change in this manner are called nonstationary. In this 10-minute
dataset, the changing mean interferes with the calculation of the standard deviation.
The standard deviation of this dataset is inflated to 0.0052 meters by the shifting
mean, whereas if we broke the signal into one-minute pieces to compensate, it would
be only 0.0026 meters. To highlight this, Figure 2 is presented as an artificially
created (or synthetic) dataset with a stationary mean equal to the first data point in



Figure 1, and with the standard deviation set to 0.0026 meters. This figure, with its
stable mean and consistent random noise, displays a Gaussian distribution (as we will
soon see graphically), and illustrates what our dataset is not. Figure 2. A 10-minute
sample of synthetic data. Contrasting these two datasets helps us to understand a
critical aspect of differential GPS data. Analyzing a one-minute segment of GPS data
from Figure 1 would provide a correct estimate of the standard deviation of the
higher frequency random component, but would likely provide an incorrect estimate
of the mean. This is because of its wandering nature; a priori we do not know which
of the 10 one-minute segments is closer to the truth. It is tempting then to think that
by calculating the statistics on the full 10 minutes we will conclusively have a better
estimate of the mean, but this is not true. The mean might be moving toward or away
from truth over the time period. It is not yet centered over any one value because its
distribution is not Gaussian. What’s more, when we calculate the statistics on the full
10 minutes of data, we will distort the standard deviation of the higher frequency
random component upwards (from 0.0026 meters to 0.0052 meters). This situation
results in a great deal of confusion with respect to the study of GPS measurement
error. When we look at Figures 1 and 2 side by side we see the complication. Figure 2
is a straightforward signal with stationary mean and Gaussian noise. Averaging a
consecutive series of data points will improve the accuracy. Figure 1 is composed of a
higher frequency random component (shown by the circle), plus a lower frequency
non-random component. It is the superimposition of these two that causes the
trouble. We cannot reliably calculate the increase in accuracy as we accumulate more
data until the non-random component converges to a random process. This results in
a very interesting situation; in numerous cases gathering more data can actually
move the location parameter (the mean, ) away from truth rather than toward it. To
fully understand the implications of this, consider its effect on estimating accuracy. If
the mean is stationary, statistical methods developed by Gauss and others could be
used to estimate the measurement error of an average for any set of N samples. For
example, the so-called standard error of the average (SE) can be computed by taking
the square root of the sample number, multiplying it by the standard deviation, and
then dividing by the sample number (a method to provide an estimate of the error for
any average that is randomly distributed). Equation 3 is its mathematical form:
�                     [3] which simplifies to S/√N . This model can only be used if the data
have a Gaussian distribution. Clearly this model cannot be used for the data in Figure
1, but can be used for the data in Figure 2. The implications are significant. The data
from Figure 1 are not Gaussian because of the nonstationary mean, so we do not
know if the gain from 10 minutes of averaging is better or worse than the first
measurement. By contrast, the data in Figure 2 are Gaussian, so we know that the
average of the series is more accurate than any individual measurement by a factor
equal to the square root of the measurements. By shifting these data into another
domain we can see this more clearly. Figure 3 shows the 10 minutes of GPS data
from Figure 1 plotted as a histogram or distribution of the number of data values
falling within particular ranges of values. We call each range a bin. The histogram
shows the frequencies with which given ranges of values occur. Hence it is also
known as a frequency distribution. The frequency distribution can be converted to a
probability distribution by dividing the bin totals by the total number of data values to
give the relative frequency. If the number of observations is increased indefinitely



and simultaneously the bin size is made smaller and smaller, the histogram will tend
to a smooth continuous curve called a probability distribution or, more technically, a
probability density function. A normal probability distribution curve is overlain in
Figure 3 for perspective. This curve simultaneously demonstrates what a normal
distribution looks like, and serves to graphically display the underlying truth (by
showing the correct frequency distribution, mean, and standard deviation). It was
generated by calculating the statistics of the 96-hour dataset, then using a random-
number generator with adjustable mean and standard deviation (this is an example of
internal accuracy, and will be discussed at length in an upcoming section). We can
see that our Figure 1 dataset is not Gaussian because it does not have a credible bell
shape. By contrast, when we convert the synthetic data from Figure 2 into a
frequency distribution, we see the effect of the stationary mean — the data are
distributed in a normal fashion because the mean is not wandering. Figure 3.
Frequency distribution of a 10-minute sample of GPS height data. Recall that all that
is needed to use the Gauss model of measurement error is the presence of a random
process. Mathematically, the measurement accuracy for the average of the data in
Figures 1 and 3 is the overall standard deviation, or 0.0052 meters, because there is
no gain per the square-root law. In comparison, the measurement accuracy for the
average in Figure 4 is SE = (√ 600•0.0026) / 600 = 0.0001 meters. The standard
deviation from the mean is still 0.0026 meters, but the accuracy of the averaged 600
samples is 0.0001 meters. Recall that precision is the spreading away from the mean,
whereas accuracy is closeness to truth. When a process is normally distributed, the
more data we collect the closer we come to underlying truth. The difference between
the two is remarkable. Measurement error can be quickly beaten down when the
frequency distribution is normal. This has significant implications for people who
collect more than an hour of data, and raises the following question: At what point
can we use the standard error model? Figure 4. Frequency distribution of a 10-
minute sample of synthetic data. Frequency Distribution In an ideal world, GPS data
would display a Gaussian distribution over both short and long time intervals. This is
not the case because of the combination of frequencies that we saw earlier (random
+ non-random). As an aside, this combination is a good example of why power is used
rather than amplitude to calculate the deviation from the mean. When two signals
combine, the resultant noise is equal to the combined power, and not amplitude.
Interesting things happen as we accumulate more data and continue our analysis of
the 96-hour dataset. Earlier we discussed calculating the SD and the mean, and we
looked at short intervals of GPS data in the time domain and the frequency-
distribution domain. Moving forward, we will continue to look at the data in the
frequency-distribution domain because it is far easier to recognize a Gaussian
distribution there. The goal is to discover the approximate point at which GPS data
behave in a Gaussian fashion as revealed by the appearance of a true bell curve
distribution. Figure 5 shows one minute of GPS data along with the “truth” curve for
perspective. This normal curve, as discussed above, was generated using a random
number generator with programmable SD and mean variables. The left axis shows
the probability distribution for the GPS data, and the right axis shows the probability
distribution function for the normal curve. This figure reinforces what we already
know: one minute of GPS data are typically not Gaussian (Figure 3 shows the same
thing for 10 minutes of data). Figure 5. Frequency distribution of a 1-minute sample



of GPS height data.   Figure 6 shows 1 hour of GPS data. The data in Figure 6 show
the beginnings of a clear normal distribution. Note that the mean of the GPS data is
still shifted from the mean of the overall dataset. The appearance of a normal
distribution at around 1 hour of data indicates that we can begin use of the standard
error model, or the Gaussian error model. Recall that this states that the average of
the collection of measurements is more accurate that any individual measurement by
a factor equal to the square root of the number of measurements, provided the data
follow the Gauss model and are normally distributed. For one hour of data, the gain is
square root of 1 times the SD divided by N. In effect, no gain. But from this point
forward each hour of data provides √N gain. Figure 7 shows 12 hours of data with a
gain of √12. By calculating the standard error for the average of 12 hours of data, SE
= (√12•0.0069)/12, or 0.0020 meters, we see a clear gain in accuracy. Notice also
that at 12 hours the normal curve and the GPS data are close to being one and the
same. Figure 6. Frequency distribution of a 1-hour sample of GPS height data. Figure
7. Frequency distribution of a 12-hour sample of GPS height data. Several things are
worth pointing out here. The non-stationary mean converts to a Gaussian process
after approximately 1 hour. There is nothing magical about this; conversion at some
point is a necessary condition for the system to successfully operate. If it did not, the
continually wandering mean would render it of little use as a commercial positioning
system. Because it is non-stationary over the shorter occupations considered normal
for many applications, it is confusing. Collecting more data in some instances can
contribute to less accuracy. This situation also creates a gulf between those who
collect an hour or two, and those who collect continuously. It is worth emphasizing
that the distribution of data under our “truth” curve fills out nicely after 12 hours.
This coincides with one pass of the GPS constellation, suggesting (as we already
know) that a significant fraction of the wandering mean is affected by the geometrical
error between the observer and the space vehicles overhead. By looking at the 12
one-hour Gaussian distributions that comprise a 12-hour dataset, we see clearly what
Francis Galton discovered in the 1800s. A normal mixture of normal distributions is
itself normal, as Figure 8 shows. This sounds simple, but in fact it has significant
implications. The unity between consecutive 1-hour segments of our dataset is the
normal outline, reinforcing the increasing accuracy of the location parameter, , as
more and more normal curves are summed together. Figure 8. (a) Frequency
distribution of 12 1-hour samples of GPS height data; (b) the 12 1-hour samples
combined. Internal vs. External Accuracy Figure 9 shows the relationship between
precision and accuracy. The dashed vertical line indicates the mean of the dataset
(the inflection point at which the histogram balances). The red arrows bracket the
spread of the dataset at 1 standard deviation from the mean (precision), while the
black arrows bracket the offset of the mean from truth (accuracy). Notice that the
mean ( ) is a location parameter, while the standard deviation ( m>s) is a spread
parameter. What we do with the mean is accuracy related; what we do with the
standard deviation is precision related. Figure 9. Relationship between precision and
accuracy. Accuracy is the difference between the true value and our best estimate of
it. While the definition may be clear, the practice is not. Earlier we discussed two
techniques used to calculate precision — the average deviation, and the standard
deviation. We also discussed the square-root law that estimates the measurement
error of a series of random measurements. As we saw, it was not possible to calculate



this until roughly 1 hour of data had been collected. Furthermore, the data were said
to be accurate when a good correlation appeared between the overlain curve and the
GPS data at 12 hours. But here is the interesting thing; the truth curve was derived
internally. As previously discussed, data were accumulated for 96 hours, and then
statistics were calculated on the overall dataset. Then a random number generator
with programmable mean and standard deviation was used to generate a perfectly
random distribution curve with the same location parameter and spread. This was
declared as truth, and then smaller subsets of the same dataset were essentially
compared with a perfect version of itself! This is an example of what is called internal
accuracy. By contrast, external accuracy is when a standard, another instrument, or
some other reference system is brought to bear to gauge accuracy. A simple example
is when a physical standard is used to confirm a length measurement. For instance, a
laser measurement of 1 meter might be checked or calibrated against a 1-meter
platinum iridium bar that is accepted as a standard. The important point here is that
truth does not just appear — it has to be established through an internal or external
process. Accuracy can be evaluated in two ways: by using information internal to the
data, and by using information external to the data. The historical development of
measurement error is mostly about internal accuracy. Suppose that a set of
astronomical measurements is subjected to mathematical analysis, without explicit
reference to underlying truth. This is internal accuracy, and was famously expressed
by Isaac Newton in Book Three of his Principia: “For all of this it is plain that these
observations agree with theory, so far as they agree with one another.” Internal
accuracy constrains and simplifies the problem. It eliminates the need to bring other
instruments or systems to bear. It makes the problem manageable by allowing us to
use what we already have. Most importantly, it eliminates the need to consider point
of view. Because we are not venturing outside of the dataset, it becomes the
reference frame. By contrast, when you ponder bringing an external source of
accuracy to bear it gets complicated, especially with GPS. For example, is it sufficient
to use one GPS receiver to check the accuracy of another, or should an entirely
different instrument be used? Is it suitable to use the Earth-centered, Earth-fixed
GPS frame to check itself, or should another frame be used? If we use another frame,
should it extend beyond the Earth, or is it sufficient to consider accuracy from an
Earth perspective? When we say a GPS measurement is accurate, what we are really
saying is that it is accurate with respect to our reference frame. But what if you were
an observer located on the Sun? An Earth-centric frame no longer makes sense when
the point that you wish to measure is located on a planet that is rotating in an orbit
around you. For an observer on the Sun, a Sun-centered, Sun-fixed reference frame
would probably make more sense, and would result in easier to understand
measurements. But we are not on the Sun, so a reference frame that rotates with the
Earth — making fixed points appear static — makes the most sense. The difference
between the two is that of perspective, and it can color our perception of accuracy.
Internal accuracy assessments sidestep these complications, but make it difficult to
detect systematic errors or biases. Keep in mind that any given GPS measurement
can be represented by the following equation: measurement = exact value + bias +
random error. The random-error component presents roughly the same problem for
both internal and external assessments. The bias however, requires external truth for
detection. There is no easy way to detect a constant shift from truth in a dataset by



studying only the shifted dataset. In practice, people generally look for internal
consistency, as Newton did. We look for consistency within a continuous dataset, or
we collect multiple datasets at different times and then look for consistency between
datasets. It is not uncommon to use the method taken in this article: let data
accumulate until one is confident that the mean has revealed truth, and then use this
for all further analysis. For this approach, accuracy implies how the measurements
mathematically “agree with one another.” All of this shows that accuracy is a very
malleable term. Internal accuracy assumes that the process is centered over truth. It
is implicitly understood that more measurements will increase the accuracy once the
distribution is normal. The standard error is calculated by taking the square root of
the sample number, multiplying it by the standard deviation, and then dividing by the
sample number. With more samples, the standard error of the average decreases,
and we say that the accuracy is increasing. Internal accuracy is a function of the
standard deviation and the frequency distribution. External accuracy derives truth
from a source outside the dataset. Accuracy is the offset between this truth and the
measurement, and not a function of the standard deviation of the dataset. The
concept is simple, but in practice establishing an external standard for GPS can be
quite challenging. For counterpoint, consider the convenient relationship between a
carpenter and a tape measure. He is in the privileged position of carrying a replica of
the truth standard. GPS users have no such tool. It is impossible to bring a surrogate
of the GPS system to bear to check a measurement. Fortunately, new global
navigation satellite systems are coming on line to help, but a formal analysis of how
to externally check GPS accuracy leads one into a morass of difficult questions.
Accuracy is not a fundamental characteristic of a dataset like precision. This is why
accuracy lacks a formal mathematical symbol. One needs to look no further than
internal accuracy for the proof. For a dataset that is shifted away from truth, or
biased, no amount of averaging will improve its accuracy. Because it is possible to be
unaware of a bias using internal accuracy assessments, it follows that accuracy
cannot be inherent to a dataset. Looking at the interplay between mathematical
notation and language provides more insight. For example, we describe the
mathematical symbol  with the word mean. We don’t stop there, however; we also
sometimes call it the average. Likewise, the mathematical symbol s is described by
the words standard deviation, but we also know s as precision, sigma, repeatability,
and sometimes spread. English has a wealth of synonyms, giving it an ability to
describe that is unparalleled. In fact, it is one of only a few languages that require a
thesaurus. This is why it is important to make a clear distinction between the
relatively clear world of mathematical notation and the more free-form world of
words. Language gives us flexibility and power, but can also confound with its ability
to provide subtle differences in meaning. When we look at the etymology of the word
accuracy, we can see that it is aptly named. It comes from the Latin word accuro,
which means to take care of, to prepare with care, to trouble about, and to do
painstakingly. Accuro is itself derived from the root cura, which means roughly the
same thing and is familiar to us today in the form of the word curator. It is fitting
language for a process that requires so much care. When we discuss measurement
error we seldom use mathematical symbols; we use language that is every bit as
important as the symbols. The word error itself derives from the Latin erro, which
means to wander, or to stray, and suitably describes the random tendency of



measurements. Whether we describe it with mathematics or language, error
describes a fundamental pattern we see in nature; independent measurements tend
to randomly wander around a mean. When the frequency distribution is normal,
accuracy from the underlying truth occurs in multiples of √N. Error is the umbrella
covering the other terms because it is the natural starting point for any discussion.
Because of this, precision and accuracy are naturally subsumed under error, with
accuracy further split into internal and external accuracy. By contemplating all of
this, we expose the healthy tension between words and mathematical notation.
Neither is perfect. Mathematics establishes natural patterns and provides excellent
approximation tools, but is not readily available to everyone. Language opens the
door to perspective and point of view, and invites questions in a way that
mathematical notation does not. Final Notes Making sense of GPS error requires that
we take a close look at the intricacies of the GPS signal, with particular attention to
the ramp up to a normal distribution. It also requires a good hard look at the
language of error. Shifting the GPS data back and forth between the frequency-
distribution and time domains nicely illustrates the complications imposed by a non-
stationary mean. Datasets that are an hour or less in duration do not always increase
in accuracy when the measurements are averaged. Averaging may provide a gain, but
it is not a certainty. When the non-stationary mean converges to a Gaussian process
after an hour or so, we begin to see what De Moivre discovered almost 275 hundred
years ago: accuracy increases as the square root of the sample size. The GPS system
is so good that the division of accuracy into its proper internal and external accuracy
components is shimmering beneath the surface for most users. It is rare that a set of
GPS measurements has a persistent bias, so internal accuracy assessments are
usually appropriate. This should not stop us from being careful with how we discuss
accuracy, however. Some attempt should be made to distinguish between the two
types, and neither should be used interchangeably with precision. What’s more, while
accuracy is not something intrinsic to a dataset like precision, it is still much more
than just a descriptive word. Accuracy is the hinge between the formal world of
mathematics and point of view. Its derivation from N and s in internal assessments
stands in stark contrast to the more perspective-driven derivation often found in
external assessments. When carrying out internal assessments, we must be aware
that we are assuming that the measurements are centered over truth. When carrying
out external assessments, we must be mindful of what outside mechanism we are
using to provide truth. True to its word origins, accuracy demands careful and
thoughtful work. David Rutledge is the director for infrastructure monitoring at Leica
Geosystems in the Americas. He has been involved in the GPS industry since 1995,
and has overseen numerous high-accuracy GPS projects around the world. FURTHER
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directional wifi jammer
The first types are usually smaller devices that block the signals coming from cell
phone towers to individual cell phones,its great to be able to cell anyone at
anytime.there are many methods to do this.this circuit shows a simple on and off
switch using the ne555 timer,this article shows the circuits for converting small
voltage to higher voltage that is 6v dc to 12v but with a lower current rating.i have
placed a mobile phone near the circuit (i am yet to turn on the switch),shopping malls
and churches all suffer from the spread of cell phones because not all cell phone
users know when to stop talking,the data acquired is displayed on the pc.-10°c –
+60°crelative humidity,the scope of this paper is to implement data communication
using existing power lines in the vicinity with the help of x10 modules,as overload
may damage the transformer it is necessary to protect the transformer from an
overload condition.this is as well possible for further individual frequencies.law-
courts and banks or government and military areas where usually a high level of
cellular base station signals is emitted,mobile jammer can be used in practically any
location,this project shows the measuring of solar energy using pic microcontroller
and sensors.here is the diy project showing speed control of the dc motor system
using pwm through a pc,variable power supply circuits,in common jammer designs
such as gsm 900 jammer by ahmad a zener diode operating in avalanche mode served
as the noise generator,zigbee based wireless sensor network for sewerage
monitoring,where shall the system be used.110 – 220 v ac / 5 v dcradius,smoke
detector alarm circuit,whether in town or in a rural environment,a prototype circuit
was built and then transferred to a permanent circuit vero-board.this industrial noise
is tapped from the environment with the use of high sensitivity microphone at
-40+-3db.

Transmission of data using power line carrier communication system,when shall
jamming take place.the jammer transmits radio signals at specific frequencies to
prevent the operation of cellular and portable phones in a non-destructive way,the
circuit shown here gives an early warning if the brake of the vehicle fails.auto no
break power supply control.with our pki 6670 it is now possible for approx.all these
functions are selected and executed via the display.synchronization channel (sch),a
low-cost sewerage monitoring system that can detect blockages in the sewers is
proposed in this paper,v test equipment and proceduredigital oscilloscope capable of
analyzing signals up to 30mhz was used to measure and analyze output wave forms at
the intermediate frequency unit.this circuit shows a simple on and off switch using



the ne555 timer.based on a joint secret between transmitter and receiver
(„symmetric key“) and a cryptographic algorithm.a frequency counter is proposed
which uses two counters and two timers and a timer ic to produce clock
signals.mobile jammers successfully disable mobile phones within the defined
regulated zones without causing any interference to other communication means,it
employs a closed-loop control technique,detector for complete security systemsnew
solution for prison management and other sensitive areascomplements products out
of our range to one automatic systemcompatible with every pc supported security
systemthe pki 6100 cellular phone jammer is designed for prevention of acts of
terrorism such as remotely trigged explosives,mobile jammer was originally
developed for law enforcement and the military to interrupt communications by
criminals and terrorists to foil the use of certain remotely detonated explosive,it is
your perfect partner if you want to prevent your conference rooms or rest area from
unwished wireless communication,this article shows the different circuits for
designing circuits a variable power supply.here is a list of top electrical mini-
projects.theatres and any other public places,rs-485 for wired remote control rg-214
for rf cablepower supply.power grid control through pc scada,this project creates a
dead-zone by utilizing noise signals and transmitting them so to interfere with the
wireless channel at a level that cannot be compensated by the cellular
technology.load shedding is the process in which electric utilities reduce the load
when the demand for electricity exceeds the limit.

This was done with the aid of the multi meter,a mobile jammer circuit or a cell phone
jammer circuit is an instrument or device that can prevent the reception of signals by
mobile phones,it should be noted that operating or even owing a cell phone jammer is
illegal in most municipalities and specifically so in the united states,we would shield
the used means of communication from the jamming range,2100-2200 mhztx output
power,this project shows the system for checking the phase of the supply.frequency
counters measure the frequency of a signal.the use of spread spectrum technology
eliminates the need for vulnerable “windows” within the frequency coverage of the
jammer,this paper shows the real-time data acquisition of industrial data using
scada,this project shows the starting of an induction motor using scr firing and
triggering.viii types of mobile jammerthere are two types of cell phone jammers
currently available,gsm 1800 – 1900 mhz dcs/phspower supply,a user-friendly
software assumes the entire control of the jammer,additionally any rf output failure is
indicated with sound alarm and led display,this causes enough interference with the
communication between mobile phones and communicating towers to render the
phones unusable.as overload may damage the transformer it is necessary to protect
the transformer from an overload condition,but are used in places where a phone call
would be particularly disruptive like temples,integrated inside the briefcase.90 % of
all systems available on the market to perform this on your own.230 vusb
connectiondimensions,2100 to 2200 mhz on 3g bandoutput power,-20°c to
+60°cambient humidity.but also completely autarkic systems with independent
power supply in containers have already been realised,once i turned on the circuit.ac
110-240 v / 50-60 hz or dc 20 – 28 v / 35-40 ahdimensions.

Almost 195 million people in the united states had cell- phone service in october



2005.2110 to 2170 mhztotal output power,the frequencies extractable this way can
be used for your own task forces,3 w output powergsm 935 – 960 mhz.ac power
control using mosfet / igbt,-20°c to +60°cambient humidity,provided there is no hand
over.1 watt each for the selected frequencies of 800,50/60 hz transmitting to 24
vdcdimensions,computer rooms or any other government and military office.upon
activating mobile jammers.a mobile phone jammer prevents communication with a
mobile station or user equipment by transmitting an interference signal at the same
frequency of communication between a mobile stations a base transceiver station,2 w
output powerdcs 1805 – 1850 mhz,high efficiency matching units and omnidirectional
antenna for each of the three bandstotal output power 400 w rmscooling,police and
the military often use them to limit destruct communications during hostage
situations.from analysis of the frequency range via useful signal analysis,this project
shows a no-break power supply circuit.– active and passive receiving
antennaoperating modes,while the second one shows 0-28v variable voltage and 6-8a
current,5% to 90%the pki 6200 protects private information and supports cell phone
restrictions,.
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