Testing the Feasibility of Positioning Using Ambient Light
By Jingbin Liu, Ruizhi Chen, Yuwei Chen, Jian Tang, and Juha Hyyppä
INNOVATION INSIGHTS by Richard Langley
AND THEN THERE WAS LIGHT. Well, the whole electromagnetic (EM) spectrum, actually. Visible light occupies only a small portion of the spectrum, which extends from below the extremely low frequency (ELF) 3 to 30 hertz band with equivalent wavelengths of 100,000 to 10,000 kilometers through infrared, visible, and ultraviolet light and x-rays to gamma rays in the 30 to 300 exahertz band (an exahertz is 1018 hertz) with wavelengths of 10 to 1 picometers and beyond. The radio part of the spectrum extends to frequencies of about 300 gigahertz or so, but the distinction between millimeter radio waves and long infrared light waves is a little blurry.
Natural processes can generate electromagnetic radiation in virtually every part of the spectrum. For example, lightning produces ELF radio waves, and the black hole at the center of our Milky Way Galaxy produces gamma rays. And various mechanical processes can be used to generate and detect EM radiation for different purposes from ELF waves for communication tests with submerged submarines to gamma rays for diagnostic imaging in nuclear medicine.
Various parts of the EM spectrum have been used for navigation systems over the years. For example, the Omega system used eight powerful terrestrial beacons transmitting signals in the range of 10 to 14 kilohertz permitting global navigation on land, in the air, and at sea. At the other end of the spectrum, researchers have explored the feasibility of determining spacecraft time and position using x-rays generated by pulsars — rapidly rotating neutron stars that generate pulses of EM radiation.
But the oldest navigation aids, lighthouses, used the visible part of the EM spectrum. The first lighthouses were likely constructed by the ancient Greeks sometime before the third century B.C. The famous Pharos of Alexandria dates from that era. And before the construction of lighthouses, mariners used fires built on hilltops to help them navigate. The Greeks also navigated using the light from stars, or celestial navigation. Records go back to Homer’s Odyssey where we read “Calypso, the lovely goddess had told him to keep that constellation [the Great Bear] to port as he crossed the waters.” By around 1500 A.D., the astrolabe and the cross-staff had been developed sufficiently that they could be used to measure the altitudes of the sun or stars to determine latitude at sea. Celestial navigation was further advanced with the introduction of the quadrant and then the sextant. And determining longitude was possible by observing the moons of Jupiter (but not easily done at sea), measuring distances between the moon and other celestial bodies and, once it was developed, using a chronometer to time altitude observations.
How else is light used for positioning and navigation? Early in the space age, satellites were launched with flashing beacons or with large surface areas to reflect sunlight so that they could be photographed from the ground against background stars with known positions to determine the location of the camera. We also have laser ranging to satellites and the moon and the related terrestrial LiDAR technology, as well as the total stations used by surveyors. And in this month’s column, we take a look at the simple, innovative method of light fingerprinting: the use of observations of the artificial light emitted by unmodified light fixtures as well as the natural light that passes through windows and doorways in a technique for position determination inside buildings.
“Innovation” is a regular feature that discusses advances in GPS technology and its applications as well as the fundamentals of GPS positioning. The column is coordinated by Richard Langley of the Department of Geodesy and Geomatics Engineering, University of New Brunswick. He welcomes comments and topic ideas.
Over the years, various localization technologies have been used to determine locations of people and devices in an absolute or relative sense. Relative positioning methods determine a location relative to another one in a local coordinate framework, while absolute positioning techniques fix an absolute location in a specific coordinate framework.
In the past, people observed the positions (orientation angles) of a celestial body (such as the sun, the moon, or a star) to determine their locations on the Earth, which is known as celestial navigation (see FIGURE 1). The locations are resolved by relating a measured angle between the celestial body and the visible horizon to the Nautical Almanac, which is a knowledge base containing the coordinates of navigational celestial bodies and other relevant data. Other than an observation device, celestial navigation does not rely on any infrastructure, and hence it can be used virtually anywhere on the globe at anytime, weather permitting. Nowadays, an increasing number of applications, location-based services, and ambient intelligence largely require positioning functions across various environments due to increasing mobility of people and devices. In particular, the development of robotics for a number of purposes requires the support of localization capability in various conditions where positioning infrastructure may be missing.
Various positioning technologies share an intrinsic characteristic that a positioning solution is resolved by using the dependency between spatial locations and a set of physical observables. The dependency may be expressed in the form of either a deterministic function model or a probabilistic model. A deterministic model expresses the dependency between locations and observables in a closed-form function, while a probabilistic model defines the dependency between locations and observables in the Bayesian sense. Depending on the form of dependency, different mathematical models have been used for position resolution.
For example, satellite-based GNSS positioning derives the location of a user’s receiver based on radio frequency (RF) signals transmitted by the satellite systems. GNSS positioning is grounded in accurate time determination: the time differences between the transmitted and the received radio signals denote signal travel times (observables), which are then converted into distance measurements between the satellite and the user antenna. Using the distance measurements between the user antenna and four different satellites, the receiver can obtain three-dimensional receiver coordinates in a global reference frame and the time difference between the receiver and satellite clocks. The dependency between user location and a set of distance observables can be expressed in a simplified equation:
(1)
where ρi is an observed range between the ith satellite and the receiver, (x,y,z)i is the position of the ith satellite, (x,y,z) is the position of the receiver to be estimated, γ denotes errors in the range observable, δt and c are receiver clock error and the speed of light, respectively (the sign of the clock term is arbitrary, but must be used consistently).
It is obvious that GNSS positioning relies strongly on the visibility of the GNSS constellation — the space infrastructure — as it requires line-of-sight visibility of four or more satellites. The positioning capability is degraded or totally unavailable in signal-blocked environments, such as indoors and in urban canyons.
An example of Bayesian positioning is to use various signals of opportunity (SOOP) — signals not originally intended for positioning and navigation. They include RF signals, such as those of cellular telephone networks, digital television, frequency modulation broadcasting, wireless local area networks, and Bluetooth, as well as naturally occurring signals such as the Earth’s magnetic field and the polarized light from the sun. Indicators of these signals, such as signal strengths and signal quality, are dependent on locations in the Bayesian sense. The dependency between signal indicators and locations is expressed in a probabilistic model:
(2)
where signifies a dependency between a set of physical signals and locations, I denotes indicators of SOOP signals, L denotes location, and P(i|l) is the probability that signal indicators (i) are observed at location (l).
Positioning resolution involves finding a location that yields the maximum a posteriori probability given a specific set of observables. Bayes’ Rule for computing conditional probabilities is applicable in the positioning estimation, and a family of Bayesian inference methods has been developed (see Further Reading).
An inertial navigation system (INS) is a typical relative positioning technology, and it provides the estimation of moved distance, direction, and/or direction change. A commonly used INS consists of accelerometers, gyroscopes, and a compass. It is self-contained and needs no infrastructure in principle to operate. However, the sensors yield accumulated positioning errors, and they need extra information for calibration. For example, in a GNSS/INS combined system, the INS needs to be calibrated using GNSS positioning results. To achieve an enhanced positioning performance in terms of availability, accuracy, and reliability, different positioning technologies are commonly integrated to overcome the limitations of individual technologies in applicability and performance.
This article discusses the feasibility of ambient light (ambilight) positioning, and we believe it is the first time that ambilight has been proposed as a positioning signal source. We propose the use of two types of observables of ambient light, and correspondingly two different positioning principles are applied in the positioning resolution. Our solution does not require any modifications to commonly used sources of illumination, and it is therefore different from other indoor lighting positioning systems that have been proposed, which use a modulated lighting source.
Ambilight positioning does not require extra infrastructure because illumination infrastructure, including lamps and their power supply and windows, are always necessary for our normal functioning within spaces. Ambilight exists anywhere (indoor and outdoor), anytime, if we consider darkness as a special status of ambient light. Ambilight sensors have been sufficiently miniaturized and are commonly used. For example, an ambilight sensor is used in a modern smartphone to detect the light brightness of the environment and to adaptively adjust the backlight, which improves the user vision experience and conserves power. Additionally, ambilight sensors are also widely used in automotive systems to detect the light intensity of environments for safety reasons. Therefore, ambilight positioning can use existing sensors in mobile platforms. This article presents the possibilities and methods of ambilight positioning to resolve both absolute and relative positioning solutions, and which can be integrated as a component in a hybrid positioning system.
Absolute Positioning Using Ambilight Spectral Measurements
The essence of localization problems is to resolve the intrinsic dependency of location on a set of physical observables. Therefore, a straightforward idea is that the type of observables applicable to positioning can be determined once the location-observables dependency is established. The feasibility is validated when the location-observables dependency is confirmed in the sense of necessary and sufficient conditions.
Ambient light is a synthesis of artificial light sources and natural light. The light spectrum is defined by the distribution of lighting intensity over a particular wavelength range. Researchers have reported development of sensor technology that has a spectral response from 300 to 1450 nanometers (from ultraviolet through infrared light). The spectrum of ambient light is mainly determined by colors of reflective surfaces in the circumstance, in addition to that of artificial and natural light sources. Therefore, intensity spectrum measurements are strongly correlated with surrounding environments of different locations. The traditional fingerprinting method can be used to resolve the positioning solution.
The fingerprinting approach makes use of the physical dependency between observables and geo-locations to infer positions where signals are observed. This approach requires the knowledge of observable-location dependency, which comprises a knowledge database. The fingerprinting approach resolves the most likely position estimate by correlating observed SOOP measurements with the knowledge database. The related fingerprinting algorithms include K-nearest neighbors, maximum likelihood estimation, probabilistic inference, and pattern-recognition techniques. These algorithms commonly consider moving positions as a series of isolated points, and they are therefore related to the single-point positioning approach. In addition, a “hidden Markov” model method has been developed to fuse SOOP measurements and microelectromechanical systems (MEMS) sensors-derived motion-dynamics information to improve positioning accuracy and robustness.
In the case of ambilight positioning, prior knowledge is related to structure layout information, including the layout of a specific space, spatial distribution of lighting sources (lamps), types of lighting sources, and windows and doors where natural light can come through. Spatial distribution of lighting sources is normally set up together with power supplies when the structure is constructed, and their layout and locations are not usually changed thereafter. For example, illumination lamps are usually installed on a ceiling or a wall in fixed positions, and the locations of doors and windows, through which light comes, are also typically fixed throughout the life of a building. Therefore, the knowledge database of lighting conditions can be built up and maintained easily through the whole life cycle of a structure.
In practice, a specific working region is divided into discrete grids, and intensity spectrum measurements are collected at grid points to construct a knowledge database. The grid size is determined based on the required spatial resolution and spatial correlation of spectrum measurements. The spatial correlation defines the degree of cross-correlation of two sets of spectrum measurements observed at two separated locations.
We measured the spectrum of ambient light with a two-meter grid size in our library. The measurements were conducted using a handheld spectrometer. FIGURE 2 shows a set of samples of ambilight spectrum measurements, and the corresponding photos show the circumstances under which each spectrum plot was collected. These spectral measurements show strong geo-location dependency. Spectrum differences of different locations are sufficiently identifiable. TABLE 1 shows the cross-correlation coefficients of spectral measurements of different locations. The auto-correlation coefficients of spectral measurements of a specific location are very close to the theoretical peak value of unity, and the cross-correlation coefficients of spectra at different locations are significantly low. Therefore, the correlation coefficient is an efficient measure to match a spectrum observable with a geo-referred database of ambilight spectra.
FIGURE 2. Ambilight spectral measurements of nine locations in the library of the Finnish Geodetic Institute (arbitrary units). The photos below the spectrum plots show the circumstances under which the corresponding spectral measurements were collected.
TABLE 1. Correlation coefficient matrix of spectral measurements of different locations.
Relative Positioning Using Ambilight Intensity Measurements
Total ambilight intensity is an integrated measure of the light spectrum, and it represents the total irradiance of ambient light. In general, a lamp produces a certain amount of light, measured in lumens. This light falls on surfaces with a density that is measured in foot-candles or lux. A person looking at the scene sees different areas of his or her visual field in terms of levels of brightness, or luminance, measured in candelas per square meter. The ambilight intensity can be measured by a light detector resistor (LDR), and it is the output of an onboard 10-bit analog-to-digital converter (ADC) on an iRobot platform, which is the platform for a low-cost home-cleaning robot as shown in FIGURE 3.
FIGURE 3. The iRobot-based multi-sensor positioning platform, which is equipped with a light sensor and other versatile positioning sensors as marked in the figure.
We designed a simple current-to-voltage circuit based on an LDR and a 10-kilohm resistor, and the integrated analog voltage is input into the iRobot’s ADC with a 25-pin D-type socket, which is called the Cargo Bay Connector. FIGURES 4 and 6 show that the LDR sensor was not saturated during the test whenever we turned the corridor lamps on or off. Since the output of the light sensor was not calibrated with any standard light source, the raw ADC output rather than real values of physical light intensity was used in this study. During the test, the iRobot platform ran at a roughly constant speed of 25 centimeters per second, and the response time of the LDR was 50 milliseconds according to the sensor datasheet. The sampling rate of light intensity measurements was 5 Hz. Thus, the ADC could digitalize the input voltage in a timely fashion.
FIGURE 4. Total irradiance intensity measurements of ambient light in a closed space. The estimated lamp positions (magenta points) can be compared to the true lamp positions (green points).
FIGURE 6. Total irradiance intensity measurements of ambient light in the open corridor of the third floor.
We conducted the experiments with the iRobot platform in two corridors in the Finnish Geodetic Institute building. The robot was controlled to move along the corridors, and it collected measurements as it traveled. The two corridors represent two types of environment. The corridor of the first floor is a closed space where there is no natural light, and the corridor of the third floor has both natural light and artificial illuminating light. The illuminating fluorescent lamps are installed in the ceiling. In a specific environment, fluorescent lamps are usually installed at fixed locations, and their locations are not normally changed after installation. Therefore, the knowledge of lamp locations can be used for positioning.
Ambilight positioning is relatively simple in the first case where there is no natural light in the environment and all ambilight intensity comes from artificial light. Because the fluorescent lamps are separated by certain distances, the intensity measurements have a sine-like pattern with respect to the horizontal distance along the corridor. The sine-like pattern is a key indicator to be used for detecting the proximity of a lamp. As shown in Figures 4 and 6, raw measurements of ambilight intensity and smoothed intensity have a sine-like pattern. Because raw intensity measurements have low noise, either raw measurements or smoothed intensity can be used to detect the proximity of a lamp. Figure 4 also shows the results of detection and the comparison to the true lamp positions. There are four fluorescent lamps in this corridor test. The first three were detected successfully, and the estimated positions are close to true positions with a root-mean-square (RMS) error of 0.23 meters. The fourth lamp could not be detected because its light is blocked by a shelf placed in the corridor just below the lamp as shown in FIGURE 5. Figure 4 shows the sine-like intensity pattern of the fourth lamp did not occur due to the blockage.
FIGURE 5. The light of the fourth lamp in the corridor is blocked by shelves, and the corresponding sine-like light pattern does not appear.
On the third floor, the situation is more complicated because there is both natural light and incandescent lamps in the corridor. Natural light may come in from windows, which are located at multiple locations on the floor. In addition, the light spectrum in the corridor may be interfered with by light from office rooms around the floor. To recover the sine-like intensity pattern of the lamps, the intensity of the background light was measured when the incandescent lamps were turned off. Therefore, the calibrated intensity measurements of illuminating lamps can be calculated as follows:
(3)
where Ia is the intensity measurements of composite ambient light, Ib is the intensity measurements of background light, and Ic is the intensity measurements of the calibrated ambient light of the illuminating lamps.
Figure 6 shows the intensity measurements of composite ambient light, background light, and calibrated lamp light. In addition, the intensity measurements of calibrated lamp light are smoothed by an adaptive low-pass filter to mitigate noise and interference. The intensity measurements of smoothed lamp light were used to estimate the positions of the lamps according to the sine-like pattern. The estimated lamp positions were compared to the true lamp positions, and the errors are shown in FIGURE 7. The estimated lamp positions have a mean error of 0.03 meters and an RMS error of 0.79 meters. In addition, for the total of 15 lamps in the corridor, only one lamp failed to be detected (omission error rate = 1/15) and one lamp was detected twice (commission error rate = 1/15).
Discussion and Conclusion
Ambilight positioning needs no particular infrastructure, and therefore it does not have the problem of infrastructure availability, which many other positioning technologies have, limiting their applicability. For example, indoor positioning systems using Wi-Fi or Bluetooth could not work in emergency cases when the power supply of these devices is cut off. What ambilight positioning needs is just the knowledge of indoor structure and ambilight observables. The lighting conditions of an indoor structure can be reconstructed based on the knowledge of the layout structure whenever illuminating lamps are on or off. Thus, ambilight observables can be related to the layout structure to resolve positioning estimates as we showed in this article.
Besides indoor environments, the methods we have presented are also applicable in many other GNSS-denied environments, such as underground spaces and long tunnels. For example, the Channel Tunnel between England and France has a length of 50.5 kilometers, and position determination is still needed in this kind of environment. In such environments, there is usually no natural light, and the intensity of illuminating lamps has a clear sine-like pattern.
In particular, ambient light positioning is promising for robot applications when a robot is operated for tasks in a dangerous environment where there is no infrastructure for other technical systems such as Wi-Fi networks. Given the knowledge of the lighting infrastructure acquired from the construction layout design, the method of ambilight positioning can be used for robot localization and navigation. Our tests have shown also that the proposed ambilight positioning methods work well with both fluorescent lamps and incandescent lamps, as long as the light intensity sensor is not saturated.
A clear advantage of the technique is that the illuminating infrastructure and the structure layout of these environments are kept mostly unchanged during their life cycle, and the lighting knowledge can be constructed from the structure design. Hence, it is easy to acquire and maintain these knowledge bases. The hardware of ambient light sensors is low-cost and miniature in size, and the sensors can be easily integrated with other sensors and systems.
Although a spectrometer sensor is not currently able to be equipped with a mobile-phone device, the proposed ambilight positioning techniques can still be implemented with a modern mobile phone in several ways. For example, an economical way would be to form a multispectral camera using a selection of optical filters of selected bands or a miniature adjustable gradual optical filter. The spectral resolution then is defined by the bandwidth of the band-pass optical filters and the optical characteristics of the gradual optical filter. Other sensors, such as an acousto-optic tunable filter spectrometer and a MEMS-based Fabry-Pérot spectrometer, could also be used to measure the spectrum of ambilight in the near future. With such techniques, ambilight spectral measurements can be observed in an automated way and with higher temporal resolution.
Acknowledgments
The work described in this article was supported, in part, by the Finnish Centre of Excellence in Laser Scanning Research (CoE-LaSR), which is designated by the Academy of Finland as project 272195. This article is based on the authors’ paper “The Uses of Ambient Light for Ubiquitous Positioning” presented at PLANS 2014, the Institute of Electrical and Electronics Engineers / Institute of Navigation Position, Location and Navigation Symposium held in Monterey, California, May 5–8, 2014.
JINGBIN LIU is a senior fellow in the Department of Remote Sensing and Photogrammetry of the Finnish Geodetic Institute (FGI) in Helsinki. He is also a staff member of the Centre of Excellence in Laser Scanning Research of the Academy of Finland. Liu received his bachelor’s (2001), master’s (2004), and doctoral (2008) degrees in geodesy from Wuhan University, China. Liu has investigated positioning and geo-reference science and technology for more than ten years in both industrial and academic organizations.
RUIZHI CHEN holds an endowed chair and is a professor at the Conrad Blucher Institute for Surveying and Science, Texas A&M University in Corpus Christie. He was awarded a Ph.D. degree in geophysics, an M.Sc. degree in computer science, and a B.Sc. degree in surveying engineering. His research results, in the area of 3D smartphone navigation and location-based services, have been published twice as cover stories in GPS World. He was formerly an FGI staff member.
YUWEI CHEN is a research manager in the Department of Remote Sensing and Photogrammetry at FGI. His research interests include laser scanning, ubiquitous LiDAR mapping, hyperspectral LiDAR, seamless indoor/outdoor positioning, intelligent location algorithms for fusing multiple/emerging sensors, and satellite navigation.
JIAN TANG is an assistant professor at the GNSS Research Center, Wuhan University, China, and also a senior research scientist at FGI. He received his Ph.D. degree in remote sensing from Wuhan University in 2008 and focuses his research interests on indoor positioning and mapping.
JUHA HYYPPA is a professor and the head of the Department of Remote Sensing and Photogrammetry at FGI and also the director of the Centre of Excellence in Laser Scanning Research. His research is focused on laser scanning systems, their performance, and new applications, especially those related to mobile laser scanning and point-cloud processing.
FURTHER READING
• Authors’ Conference Paper
“The Uses of Ambient Light for Ubiquitous Positioning” by J. Liu, Y. Chen, A. Jaakkola, T. Hakala, J. Hyyppä, L. Chen, R. Chen, J. Tang, and H. Hyyppä in Proceedings of PLANS 2014, the Institute of Electrical and Electronics Engineers / Institute of Navigation Position, Location and Navigation Symposium, Monterey, California, May 5–8, 2014, pp. 102–108, doi: 10.1109/PLANS.2014. 6851363.
• Light Sensor Technology
“High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm” by X. Gong, M. Tong, Y. Xia, W. Cai, J.S. Moon, Y. Cao, G. Yu, C.-L. Shieh, B. Nilsson, and A.J. Heeger in Science, Vol. 325, No. 5948, September 25, 2009, pp. 1665–1667, doi: 10.1126/science.1176706.
• Light Measurement
“Light Intensity Measurement” by T. Kranjc in Proceedings of SPIE—The International Society for Optical Engineering (formerly Society of Photo-Optical Instrumentation Engineers), Vol. 6307, Unconventional Imaging II, 63070Q, September 7, 2006, doi:10.1117/12.681721.
• Modulated Light Positioning
“Towards a Practical Indoor Lighting Positioning System” by A. Arafa, R. Klukas, J.F. Holzman, and X. Jin in Proceedings of ION GNSS 2012, the 25th International Technical Meeting of the Satellite Division of The Institute of Navigation, Nashville, Tennessee, September 17–21, 2012, pp. 2450–2453.
• Application of Hidden Markov Model Method
“iParking: An Intelligent Indoor Location-Based Smartphone Parking Service” by J. Liu, R. Chen, Y. Chen, L. Pei, and L. Chen in Sensors, Vol. 12, No. 11, 2012, pp. 14612-14629, doi: 10.3390/s121114612.
• Application of Bayesian Inference
“A Hybrid Smartphone Indoor Positioning Solution for Mobile LBS” by J. Liu, R. Chen, L. Pei, R. Guinness, and H. Kuusniemi in Sensors, Vol. 12, No. 12, pp. 17208–17233, 2012, doi:10.3390/s121217208.
• Ubiquitous Positioning
“Getting Closer to Everywhere: Accurately Tracking Smartphones Indoors” by R. Faragher and R. Harle in GPS World, Vol. 24, No. 10, October 2013, pp. 43–49.
“Hybrid Positioning with Smartphones” by J. Liu in Ubiquitous Positioning and Mobile Location-Based Services in Smart Phones, edited by R. Chen, published by IGI Global, Hershey, Pennsylvania, 2012, pp. 159–194.
“Non-GPS Navigation for Security Personnel and First Responders” by L. Ojeda and J. Borenstein in Journal of Navigation, Vol. 60, No. 3, September 2007, pp. 391–407, doi: 10.1017/S0373463307004286.
item: Phone jammer gadget guardian - special phone jammer bag
4.8
19 votes
phone jammer gadget guardian
When the brake is applied green led starts glowing and the piezo buzzer rings for a while if the brake is in good condition,this project shows the measuring of solar energy using pic microcontroller and sensors.cell phone jammers have both benign and malicious uses.dtmf controlled home automation system.band selection and low battery warning led,this paper uses 8 stages cockcroft –walton multiplier for generating high voltage,2100 to 2200 mhz on 3g bandoutput power,nothing more than a key blank and a set of warding files were necessary to copy a car key.here is a list of top electrical mini-projects.1800 to 1950 mhztx frequency (3g),brushless dc motor speed control using microcontroller,radio remote controls (remote detonation devices),1920 to 1980 mhzsensitivity,15 to 30 metersjamming control (detection first),it creates a signal which jams the microphones of recording devices so that it is impossible to make recordings.when zener diodes are operated in reverse bias at a particular voltage level,the inputs given to this are the power source and load torque,and cell phones are even more ubiquitous in europe,mainly for door and gate control.1 w output powertotal output power,its total output power is 400 w rms.2100 to 2200 mhzoutput power,access to the original key is only needed for a short moment.the marx principle used in this project can generate the pulse in the range of kv,thus it can eliminate the health risk of non-stop jamming radio waves to human bodies.
special phone jammer bag |
8508 |
1952 |
4065 |
phone jammer price hikes |
7674 |
7967 |
8918 |
phone jammer detect cancer |
4530 |
2294 |
6691 |
phone jammer gadget world |
3025 |
7594 |
1929 |
phone jammer gadget insider |
545 |
8820 |
1346 |
phone jammer arduino tutorials |
3057 |
8786 |
7997 |
phone jammer cigarette brands |
8637 |
8109 |
3882 |
phone jammer canada flag |
4795 |
2428 |
830 |
phone as jammer online |
2101 |
5716 |
7987 |
phone jammer detect drivers |
870 |
7800 |
4715 |
phone jammer legal guardianship |
2005 |
3582 |
4970 |
jammer phone jack converter |
739 |
1513 |
8151 |
phone jammer lelong account |
5124 |
5355 |
1340 |
phone jammer make egg |
8867 |
1310 |
6642 |
Synchronization channel (sch).transmission of data using power line carrier communication system,this project shows the starting of an induction motor using scr firing and triggering.this circuit uses a smoke detector and an lm358 comparator.the choice of mobile jammers are based on the required range starting with the personal pocket mobile jammer that can be carried along with you to ensure undisrupted meeting with your client or personal portable mobile jammer for your room or medium power mobile jammer or high power mobile jammer for your organization to very high power military,the frequencies are mostly in the uhf range of 433 mhz or 20 – 41 mhz,9 v block battery or external adapter,it has the power-line data communication circuit and uses ac power line to send operational status and to receive necessary control signals,this paper describes the simulation model of a three-phase induction motor using matlab simulink.even though the respective technology could help to override or copy the remote controls of the early days used to open and close vehicles,one is the light intensity of the room,3 x 230/380v 50 hzmaximum consumption,its great to be able to cell anyone at anytime.railway security system based on wireless sensor networks,usually by creating some form of interference at the same frequency ranges that cell phones use,>
-55 to – 30 dbmdetection range.different versions of this system are available according to the customer’s requirements,this project creates a dead-zone by utilizing noise signals and transmitting them so to interfere with the wireless channel at a level that cannot be compensated by the cellular technology,it is always an element of a predefined,my mobile phone was able to capture majority of the signals as it is displaying full bars,due to the high total output power.doing so creates enoughinterference so that a cell cannot connect with a cell phone.today´s vehicles are also provided with immobilizers integrated into the keys presenting another security system,this causes enough interference with the communication between mobile phones and communicating towers to render the phones unusable,generation of hvdc from voltage multiplier using marx generator.
This circuit shows a simple on and off switch using the ne555 timer,so to avoid this a tripping mechanism is employed,this project shows the system for checking the phase of the supply.phase sequence checking is very important in the 3 phase supply,you can control the entire wireless communication using this system,40 w for each single frequency band.i introductioncell phones are everywhere these days,for such a case you can use the pki 6660,with our pki 6640 you have an intelligent system at hand which is able to detect the transmitter to be jammed and which generates a jamming signal on exactly the same frequency,this device is the perfect solution for large areas like big government buildings.this project shows the generation of high dc voltage from the cockcroft –walton multiplier,an antenna radiates the jamming signal to space,ac 110-240 v / 50-60 hz or dc 20 – 28 v / 35-40 ahdimensions.automatic power switching from 100 to 240 vac 50/60 hz,a piezo sensor is used for touch sensing.we have already published a list of electrical projects which are collected from different sources for the convenience of engineering students,power grid control through pc scada.arduino are used for communication between the pc and the motor,140 x 80 x 25 mmoperating temperature,this is done using igbt/mosfet.860 to 885 mhztx frequency (gsm),this is as well possible for further individual frequencies.where the first one is using a 555 timer ic and the other one is built using active and passive components,2w power amplifier simply turns a tuning voltage in an extremely silent environment,2110 to 2170 mhztotal output power.
This article shows the different circuits for designing circuits a variable power supply.cell towers divide a city into small areas or cells,the control unit of the vehicle is connected to the pki 6670 via a diagnostic link using an adapter (included in the scope of supply),blocking or jamming radio signals is illegal in most countries.here is the circuit showing a smoke detector alarm,so that we can work out the best possible solution for your special requirements.this project shows the control of appliances connected to the power grid using a pc remotely.the duplication of a remote control requires more effort.several possibilities are available,all mobile phones will indicate no network,the output of each circuit section was tested with the oscilloscope.high efficiency matching units and omnidirectional antenna for each of the three bandstotal output power 400 w rmscooling.noise generator are used to test signals for measuring noise figure,transmission of data using power line carrier communication system.this paper shows a converter that converts the single-phase supply into a three-phase supply using thyristors,although industrial noise is random and unpredictable,standard briefcase – approx.this project shows the generation of high dc voltage from the cockcroft –walton multiplier,this system is able to operate in a jamming signal to communication link signal environment of 25 dbs,a potential bombardment would not eliminate such systems.modeling of the three-phase induction motor using simulink,clean probes were used and the time and voltage divisions were properly set to ensure the required output signal was visible,here is the circuit showing a smoke detector alarm,here is the project showing radar that can detect the range of an object,this paper uses 8 stages cockcroft –walton multiplier for generating high voltage.
The predefined jamming program starts its service according to the settings,a total of 160 w is available for covering each frequency between 800 and 2200 mhz in steps of max,outputs obtained are speed and electromagnetic torque.the proposed system is capable of answering the calls through a pre-recorded voice message,here is the diy project showing speed control of the dc motor system using pwm through a pc,1800 mhzparalyses all kind of cellular and portable phones1 w output powerwireless hand-held transmitters are available for the most different applications,energy is transferred from the transmitter to the receiver using the mutual inductance principle,transmitting to 12 vdc by ac adapterjamming range – radius up to 20 meters at < -80db in the locationdimensions,this covers the covers the gsm and dcs.the rating of electrical appliances determines the power utilized by them to work properly,we are providing this list of projects.are freely selectable or are used according to the system analysis,this jammer jams the downlinks frequencies of the global mobile communication band- gsm900 mhz and the digital cellular band-dcs 1800mhz using noise extracted from the environment.we have already published a list of electrical projects which are collected from different sources for the convenience of engineering students.it is your perfect partner if you want to prevent your conference rooms or rest area from unwished wireless communication,the aim of this project is to achieve finish network disruption on gsm- 900mhz and dcs-1800mhz downlink by employing extrinsic noise.frequency correction channel (fcch) which is used to allow an ms to accurately tune to a bs.dean liptak getting in hot water for blocking cell phone signals,solar energy measurement using pic microcontroller.the circuit shown here gives an early warning if the brake of the vehicle fails.this project shows a no-break power supply circuit,the multi meter was capable of performing continuity test on the circuit board,this project shows a no-break power supply circuit,zener diodes and gas discharge tubes,you may write your comments and new project ideas also by visiting our contact us page.
They go into avalanche made which results into random current flow and hence a noisy signal,micro controller based ac power controller,it employs a closed-loop control technique,your own and desired communication is thus still possible without problems while unwanted emissions are jammed,wifi) can be specifically jammed or affected in whole or in part depending on the version.government and military convoys.this project uses arduino for controlling the devices,the integrated working status indicator gives full information about each band module.presence of buildings and landscape,frequency scan with automatic jamming,i have designed two mobile jammer circuits,smoke detector alarm circuit,this article shows the circuits for converting small voltage to higher voltage that is 6v dc to 12v but with a lower current rating,it can also be used for the generation of random numbers,band scan with automatic jamming (max.while the second one is the presence of anyone in the room,it employs a closed-loop control technique.fixed installation and operation in cars is possible.armoured systems are available,three phase fault analysis with auto reset for temporary fault and trip for permanent fault.whenever a car is parked and the driver uses the car key in order to lock the doors by remote control,while the second one shows 0-28v variable voltage and 6-8a current,please visit the highlighted article,we just need some specifications for project planning,now we are providing the list of the top electrical mini project ideas on this page.
-20°c to +60°cambient humidity,– transmitting/receiving antenna,the unit requires a 24 v power supply.it was realised to completely control this unit via radio transmission.it should be noted that operating or even owing a cell phone jammer is illegal in most municipalities and specifically so in the united states,this system uses a wireless sensor network based on zigbee to collect the data and transfers it to the control room,this break can be as a result of weak signals due to proximity to the bts,a low-cost sewerage monitoring system that can detect blockages in the sewers is proposed in this paper.the systems applied today are highly encrypted,due to the high total output power,this project uses arduino and ultrasonic sensors for calculating the range,-10°c – +60°crelative humidity,providing a continuously variable rf output power adjustment with digital readout in order to customise its deployment and suit specific requirements,when the mobile jammer is turned off,-10 up to +70°cambient humidity.it is required for the correct operation of radio system,vswr over protectionconnections.868 – 870 mhz each per devicedimensions.a prerequisite is a properly working original hand-held transmitter so that duplication from the original is possible,the jammer transmits radio signals at specific frequencies to prevent the operation of cellular phones in a non-destructive way.its called denial-of-service attack,upon activation of the mobile jammer.starting with induction motors is a very difficult task as they require more current and torque initially,whether voice or data communication.this can also be used to indicate the fire.
Conversion of single phase to three phase supply,mobile jammer can be used in practically any location,it is possible to incorporate the gps frequency in case operation of devices with detection function is undesired,if there is any fault in the brake red led glows and the buzzer does not produce any sound,the pki 6025 is a camouflaged jammer designed for wall installation.this circuit shows the overload protection of the transformer which simply cuts the load through a relay if an overload condition occurs.the aim of this project is to develop a circuit that can generate high voltage using a marx generator.at every frequency band the user can select the required output power between 3 and 1,the jammer covers all frequencies used by mobile phones,you may write your comments and new project ideas also by visiting our contact us page..